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1 Introduction

Currently the U.S. power grid is on the cusp of a tremendous expansion in the

amount of sensor data that is available to support its operations. For decades

the power grid has been operated using supervisory control and data access

systems that poll each sensor once every two or four seconds�a situation that

some in the industry have characterized as ��ying blind.� Now, widespread

deployment of sensing systems called phasor measurement units (PMUs) that
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provide accurately time-stamped data 30, 60, or more times each second is

near at hand. By the end of the year 2013, utilities, with assistance of

the American Recovery and Reinvestment Act of 2009 (ARRA) will have

increased the number of these devices on the grid to nearly 1000, roughly an

order of magnitude increase over what exists today. Data from PMUs and

other high-rate sensing devices will be used to support new control schemes in

support of reliable and e�cient operation of the power grid as larger fractions

of electric power demand are met by intermittent sources such as wind and

solar, and as controllable loads, such as electric vehicle rechargers, increase.

As power grid operations come to increasingly rely on new control schemes

using these data, the security of the data and their delivery, especially avail-

ability and integrity, but to some degree con�dentiality as well, is of great

concern. The security challenges will become even more di�cult as the num-

ber of sensors increases and they become more widely deployed under the

control of various entities throughout the transmission and distribution sys-

tems, extending even to micro-grids in the future. Good security practices

and technologies such as those required by the NERC CIP standards will be

even more essential to reliable grid operations than they are today.

Our thesis in this work is that regardless of the quality of the conven-

tional security mechanisms used in such a system, the scale of the system

and operational realities associated with large numbers of sensors and people

spread over a wide geographic area and under diverse management means

that conventional security mechanisms can provide only uncertain security.
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For example, when authentication is performed using a public-key infras-

tructure, the reliability of the authentication is ultimately limited by the

uncertainty of the binding between a particular public key and the authen-

ticated entity. While one might wish that there were no uncertainty about

this, it is in fact quite likely in a large-scale system that some of the bindings

are incorrectly known at least some of the time by some entities, whether

due to mistake or malicious manipulation.

If this thesis is true, then the reliability of the system will either come

down to blind faith�we know the security is uncertain but we have to trust

in it because it is all we have�or to decision processes that explicitly and

appropriately take into account the uncertainties associated with security.

In the remainder of this paper we describe our work thus far on the latter

viewpoint.

Since the power grid must be controlled in real time in an ever-changing

security threat environment we are interested in decision models that can be

fully automated rather than ones that rely on insights of humans. Start-

ing with this goal�computational decision making in the face of uncer-

tainty�leads to the vast and expanding literature on decision theories that

are used in business strategy and operations, military planning, etc. Be-

cause Bayesian decision theory �ts well with our desire for a computational

solution, our approach uses a Bayesian perspective [19].

The word trust is introduced here for its connotations of one party's (the

trustor's) reliance on and belief in the performance of another party (the
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trustee); for example, trust in a PKI certi�er to correctly bind a public key

to some other entity. The reliance or belief often must occur without cer-

tainty or may be in the form of a prediction about the future (itself a source

of uncertainty). Trust, however, need not be blind: trustors can use evidence,

for example in the form of past experience with a trustee, reputation infor-

mation, or contracts and laws that impose penalties for non-performance, to

form their trust judgments. We believe that if critical infrastructures are to

be resilient against attacks it is essential that operational decision making

processes appropriately take into account evidence about the trustworthi-

ness of their input data. As we will show in the next section, using evidence

appropriately means that it is considered in light of the particular decision

being made: there is no single approach to judging trust that is universally

appropriate.

The contributions of this paper are, �rst, establishing the need for a

systematic way of dealing in critical infrastructure control systems with un-

certainty related to trust and, second, an initial theoretical framework, based

on Bayesian decision theory, for incorporating trust-related evidence to ad-

dress this need. The framework suggests a number of data acquisition needs

that would be required for its use, a point to which we return in section 5.

1.1 A motivating analogy

The credit reporting and scoring system for consumer credit (Fig. 1)

provides an interesting analogy for evidence-based decision making in the
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Figure 1: Credit Reporting System

presence of risk and illustrates some of the issues. Credit bureaus collect

information from various sources and provide credit reports that detail indi-

vidual consumers' past behavior in borrowing and bill paying. Some compa-

nies further analyze the information in credit reports from multiple sources

to produce a single, numerical credit score based on statistical analysis of a

person's credit reports. The credit score is claimed to statistically represent

the creditworthiness of an individual.

Now consider the decisions lenders make in analyzing a loan application:

they have to decide whether or not to make the loan and on what terms. If

the loan is made, a lender stands to make a pro�t if the borrower pays it back,

or a loss if the borrower defaults on payment. A loss function describes the

lender's payback for various future behaviors of the borrower. While the loss

function is known, the future behavior of the borrower is, of course, uncertain

at the time the loan is made. The lender thus seeks to make a decision
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that minimizes expected loss (maximizes expected return) by assessing the

probability of di�erent future borrower behaviors. To do this they turn to

the credit report or credit score as well as information about employment,

income, and stability of residence contained in the loan application.

There are several important things to point out in this analogy.

• First, di�erent lenders will have di�erent loss functions, and a single

lender may have di�erent loss functions for di�erent kinds of loans:

trust decisions are situational. In the power grid domain, a decision to

turn o� electric car charging at a time when the the power supply is

stressed carries di�erent loss implications than a decision to shed load

by turning o� power to an entire region.

• Second, di�erent lenders may assess the probability of various borrower

behaviors di�erently based on the same credit report facts: trust deci-

sions are subjective.

• Third, the analogy is imperfect: for lending, risk pooling allows busi-

nesses to balance losses from some loans with pro�ts from others, so

decisions take into account not only an individual loan but a whole

portfolio of loans. Power grid operational decisions' consequences can-

not be easily aggregated, so in this domain the decision processes will

emphasize analysis of individual decisions.

So there are similarities and di�erences between the two domains. How-

ever the structure is basically the same: the trustor collects evidence about
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trustees and uses it to probabilistically predict the behavior of the trustee

according to a model. The trustor may make decisions that later, based on

hindsight, seem wrong, but are nevertheless the best that could be made at

the time based on the information available.

1.2 Preliminaries

The distributed control system for a large-scale critical infrastructure (such

as the power grid) can be described abstractly as consisting of a collection of

controllers, a collection of data sources, and a collection of actuators. Actu-

ators and controllers share the essential characteristics, for our purposes, of

dealing with uncertainty of security so we will focus in what follows on con-

trollers and information sources. In the power grid, for example, controllers

are things like protective relays, automatic generator controls, remedial ac-

tion schemes, etc. Data sources include sensors, human operators, and out-

puts of controllers. Communication channels link data sources to controllers.

The essential property of controllers is that they receive inputs from data

sources and repeatedly make decisions based on those data, with the deci-

sions ultimately being re�ected in an action that changes the physical state

of the grid in some way.

Because of noise in sensor outputs, in today's system inputs are assumed

probabilistically related to the actual state of the sensed world by consid-

ering that each measurement consists of the actual state plus a normally-

distributed noise term. Failures in the system can lead to bad inputs (highly
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improbable in the normally-distributed-noise model) which can often be de-

tected and excluded by bad-data detection algorithms that exploit redun-

dancy present in the inputs. Several recent papers have addressed ways that

input data streams might be intentionally attacked invisibly to the bad data

detectors in use today [15, 6].

The approach described in this paper is, at a high level, aimed at provid-

ing controllers with the ability to evaluate evidence from a variety of sources

regarding the correctness of data received from sensors and the ability of ac-

tuators to carry out commanded actions. The uncertainties associated with

these aspects as well as with outcomes are modeled probabilistically though

with much greater �exibility than a�orded by the normally-distributed-noise

approach currently used, and with explicit incorporation of uncertain results

in the form of loss functions.

2 The Bayesian decision model

Decision theory studies the values and uncertainties related to making

rational and optimal decisions [12]. Statistical theory has been widely applied

to decision theory and is a common tool for decision making problems [17].

Our method is based on the Bayesian statistical paradigm which can quantify

the uncertainties of decisions using personal probability [16]. A systematic

introduction to Bayesian decision theory can be found in [19].

As previously noted, uncertainty is inherent in complex systems and thus

8



risk, which is a state of uncertainty where some of the possibilities involve a

loss, catastrophe, or other undesirable outcome, is unavoidable. In order to

reduce risk, every entity in the system should have the ability to incorporate

evidence about the trustworthiness of other entities and be inclined to rely

on more-trustworthy peers. To begin formalizing this viewpoint we assume

that there are a number of trust-related attributes E = (E1, E2, . . . , Ep)

concerning each entity in the system, together forming the trust evidence.

Focusing on a single entity A, at a certain time point, it could collect the

current evidence about a certain entity B which can be denoted as xi =

(ε1, ε2, . . . , εp)∈ Rp. Over a period of time it will collected a number of xis

denoted x = (x1, x2, · · ·xn). Based on x, A will make a decision d ∈ D

(where D is the decision space) on B in light A's estimate of the value of θ

(0 ≤ θ ≤ 1) from the parameter space Θ which is called the trustworthiness

to be placed on B. Essentially, θ is probability that B is trustworthy.

In the current model, the decision-making process is considered as a choice

of action made by the decision maker among a set of alternatives according

to their possible consequences. In the power grid these decisions are made

under uncertainty, i.e., the decision maker can neither know the exact con-

sequence of a chosen decision before it occurs nor get accurate values of the

evidence due to the complexity and uncertainty of the system. Probabilis-

tic modeling is a natural choice both for interpreting the evidence, E, and

evaluating the consequences. The model should not only incorporate the

available information in E but also the uncertainty of this information. In
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the probabilistic model, xi (1 ≤ i ≤ n) follows a probability distribution fi,

xi ∼ fi (xi|θ, x1, · · · , xi−1) on Rp where fi is known but θ is unknown. If x is

collected over a short enough period of time, it is reasonable to assume that

x1, x2, · · · , xn are independent repeated trials from identical distributions and

the distribution can simply be denoted as

x ∼ f (x|θ)

The likelihood function l de�ned as

l (θ|x) = f (x|θ)

is equal to f but emphasizes that θ is conditional on x and manifests that

θ can be inferred from x. According to our assumptions and the likelihood

principle [3], all available information to make inference of θ is contained

in the likelihood function l (θ|x) and the value of θ can be inferred from x.

Decisions can be made based on the inferred value of θ. To combine these

processes, when the likelihood function l (θ|x) is �xed, a function from X

to D can be obtained as δ (x) which is called the decision rule as it relates

to trust. (Keep in mind that trustworthiness assessment is only one aspect

of the overall decision process�decisions are made according to the inferred

trustworthiness value, but trustworthiness evaluation is not the end goal).

In the remainer of this section we describe the elements involved in a

Bayesian determination of decision rule δ (x), namely prior distributions and
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loss functions, and then state the derived rule.

2.1 Modeling prior information

As previously noted, trust decisions are subjective: based on the very

same evidence, di�erent trustors may make di�erent decisions. In the Bayesian

model, the uncertainty on the trustworthiness value θ of a trustor regarding a

trustee before receiving evidence is modeled using a probability distribution

π(θ) on Θ, called the prior distribution. Subjectivity of trust is naturally

modelled by di�erent prior distributions.

2.2 The loss function

While it is easy to talk about making �good� decisions, the model requires

a precise formalization of the notion of goodness. All of the possible choices

in a decision should be ordered or quanti�ed. Decision theory uses the loss

function for this purpose. A loss function is any function L ≥ 0 from Θ×D

to Rp and represents the penalty L (θ, d) associated with the decision d when

the parameter takes the value θ. In our situation, the penalty L (θ, d) is the

quanti�ed consequence at the time the decision is made when the trustee's

trustworthiness value is θ and the trustor chooses decision d. However, it

is very hard to measure the trustworthiness value of a trustee in a complex

system due to the dynamic and fuzzy nature of trust [7]. So it is important

for the model to re�ect such uncertainty. A simple way to obtain the loss

is to integrate over all of the possible values of θ. What's more, instead of
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focusing on evaluating one decision, our goal is to assess a decision rule δ (x)

which is the allocation of a decision to each outcome x ∼ f (x|θ), so the loss

function L (θ, δ (x)) should also be integrated on X which is the whole space

of x.

Given the prior distribution, π (θ), and the distribution of x, f (x|θ), θ

should be integrated in proportion to π (θ) and x in proportion to f (x|θ).

So the loss function can be written as:

r (π, δ) = Eπ [R (θ, δ)] =
´

Θ

´
X L (θ, δ (x)) f (x|θ) dxπ (θ) dθ

where r (π, δ) is called the risk function of δ.

2.3 The Bayesian estimator

The goal of the decision-making model is to derive an �optimal� decision

rule that provides trustors with rational decisions about trustees based on

the observations (evidence), x. Optimality is implemented by minimizing the

risk function r (π, δ). The decision maker follows the decision rules that give

the smallest risk. However, most of the time, the trustworthiness value θ is

unknown, so a problem arises regarding under which situation we minimize

the risk function.
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A common choice for Bayes paradigm is the minimax rule which chooses

the δ̃ that satis�es sup
θ
r
(
θ, δ̃
)

= inf
δ
sup
θ
r (θ, δ). Moreover, the minimax

rule also �ts for our original intention which is to make decisions that reduce

the risk of the trustors under uncertainty.

As an implementation of the likelihood principle, the Bayesian paradigm

satis�es the decision-related requirements for trust assessment. It not only

quanti�es uncertainties and minimizes the risk in decision-making, which is

a crucial to make rational decisions, but also smoothly incorporates trustors'

prior information about the trustees' trustworthiness. This is essential when

the decision process is viewed in the context of long term operation of the

system: trustors continuously acquire new evidence that must be combined

with their prior information when making new decisions.

3 A simple example

In this section, we give an example of the decision-making model. We exam-

ine the simpli�ed decision-making case with the goal of inferring the trust-

worthiness value of a trustee based on the observation x: so D = Θ.

The evidence aggregator of the trustor collects values of the related at-

tributes E = (E1, E2, . . . , Ep) and stores these values in the corresponding

vector xi = (ε1, ε2, . . . , εp). Within a short time, T , this evidence aggregator

will collect the n vectors like xi and form x = (x1, x2, · · ·xn). Since T is short,

we assume that x1, x2, · · · xn are independent repeated trials from identical

distributions f . According to the probabilistic modeling, the values of the
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attributes are conditional on the trustworthiness value θ, so the distribution

can be denoted as f (x|θ).

As we said before, trust is subjective. For example, risk-averse trustors

may tend to make negative decisions and risk-preferred trustors may tend

to make positive decisions. The di�erences among trustors could attributed

to many factors. For instance, the di�erence might be attributed to for-

mer experience of the trustors: positive experience, which means that the

trustor made many correct decisions on trustworthy entities, will make the

trustors more risk-preferred. Conversely, negative experience, which means

that trustors made wrong decisions and trusted the wrong entities, will make

the trustors more cautious. For one-dimensional evidence, this particular

kind of subjectivity can be modelled using a Beta-distribution with param-

eters α and β as the prior distribution of trustors. Let α be the number

of past negative experiences and β the number of past positive experiences.

The prior information of trustors can be modeled as:

π (θ) = Beta (α, β) = θα−1(1−θ)β−1´ 1
0 t

α−1(1−t)β−1dt

where π (θ) is the probability that trustor will decide to trust the trustee.

Increasing α makes the trustor more risk-averse and increasing β makes the

trustor more risk-preferred.
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Figure 2: CDF of three di�erent prior distributions

As Figure 2 shows, the decision maker with α = 8 and β = 2 (top line in

the diagram) will tend to make negative trust decisions since the probability

that it allocates trustworthiness values under 0.5 is high. The decision maker

with α = 2 and β = 8 (bottom line in the diagram) is more likely to make

positive decisions.

For this simpli�ed example, since we just want to estimate the value of θ,

we select a commonly-used simple loss function�the quadratic loss function:

L (θ, δ) = (θ − δ)2

The risk function would be

r (θ, δ) =
´

Θ

´
X (θ − δ)2 f (x|θ) dxπ (θ) dθ
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for which the computed estimator is

δ (x) =
´
Θ θf(x|θ)π(θ)dθ´
Θ f(x|θ)π(θ)dθ

4 Related work

Trust in the information security area is drawing increasing attention. In

1996, Rasmussen and Jansson stated the relationship between security and

social control and classi�ed security mechanisms as: soft security such as

trust and reputation systems and hard security like authentication and access

control [18]. Actually, typical security mechanisms include some aspects of

trust, but they make explicit "trust assumptions" [8]. In order to overcome

some drawbacks of the current security mechanisms such as the inadequacy

of authentication [4], a more general concept of �trustworthiness� should be

managed [1].

Trust management is largely associated with inference or decision mak-

ing. Related evidence should be collected �rst and delivered to the trust

management system as input for the decision making model. Several trust

management systems such as PolicyMaker [4], KeyNote [5], and REFEREE

[9] were designed to collect security credentials and test the compliance of

the credential with security policies. Also, some trustworthiness computing

models [11] collect trustors' former experience as evidence and make predic-

tions based on this former experience. Some models collect evidence from

other entities�these are essentially reputation systems [14, 13]. Generally,
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however, current trust management systems or trustworthiness computing

models [10, 2] set their goal as determining a numerical trustworthiness value

for a trustee or making a binary decision about whether a trustee is trust-

worthy or not. We go beyond this viewpoint by looking at trust decision

making as coupled to succeeding decision processes.

5 Conclusions and future work

We have described a framwork for incorporating trust into the decision mak-

ing processes associated with control of large-scale critical infrastructure sys-

tems. Our framework is based on the Bayesian paradigm. The risk function,

prior distribution and the distribution of evidence are three components of

the Bayesian paradigm. We used the prior distribution to model subjectiv-

ity of trustors and showed how it could be combined with newly-acquired

evidence and the derived Bayes risk function to obtain a decision rule by

minimizing the risk function.

Though the mathematical structure of the framework is straightforward,

its practical applicability depends on gaining experience with the kinds of

data that are available in critical infrastructure systems and what those data

say about trustworthiness. It is not clear for example what a particular

ratio of good/bad past experience means for a particular decision, but the

framework tells us what to do with such data when it is collected.
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